Q.P. Code:16EE	7503					R16
Reg. No.						

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Regular & Supplementary Examinations February 2018 SOFT COMPUTING TECHNIQUES

		SOFT COMPUTING TECHNIQUES						
(Control Systems) Time: 3 hours Max. Ma								
		(Answer all Five Units 5 X 12 =60 Marks)						
		UNIT-I						
1	a.	Explain about artificial neuron.	6M					
	b.	Explain about the characteristics of artificial neural networks.	6M					
		OR						
2	a.	What are the types of neuron activations functions?	6M					
	b.	What are the learning strategies for artificial neural networks?	6M					
UNIT-II								
3	a.	What are the limitations of "Perceptron" model? Explain.	6M					
	b.	Explain the architectural details and algorithm of "ADALINE" model	6M					
		OR						
4		Explain the basic architecture and algorithm of discrete Hopfield networks.	12M					
		UNIT-III						
5		Explain classical set operations in detail.	12M					
		OR						
6	a.	Differentiate between classical sets and fuzzy sets.	6M					
	b.	Explain about the membership functions in fuzzysets	6M					
		UNIT-IV						
7		Explain different methods of defuzzification	12M					
•		OR						
8		Explain working of Greg-Viot fuzzy cruise controller.	12M					
_		UNIT-V						
9	a.	Differentiate genetic algorithm verses traditional algorithm.	6M					
	b.	Describe the applications of genetic algorithm.	6M					
		OR						
10		Explain different reproduction operators used in GA *** END ***	12M					